Page 1

Displaying 1 – 4 of 4

Showing per page

Borel classes of uniformizations of sets with large sections

Petr Holický (2010)

Fundamenta Mathematicae

We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to Σ α , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a Π α uniformization which is the graph of a Σ α -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with G δ sections.

Borel sets with σ-compact sections for nonseparable spaces

Petr Holický (2008)

Fundamenta Mathematicae

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections E x = y Y : ( x , y ) E , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Currently displaying 1 – 4 of 4

Page 1