On a characterization of normal and countably paracompact spaces via set-avoiding selections
We give a characterization of normal and countably paracompact spaces via continuous set-avoiding selections.
We give a characterization of normal and countably paracompact spaces via continuous set-avoiding selections.
A negative answer to a question of E.A. Michael is given: A convex -subset of a Hilbert space is constructed together with a l.s.c. map having closed convex values and no continuous selection.
Blum and Swaminathan [Pacific J. Math. 93 (1981), 251–260] introduced the notion of -fixedness for set-valued mappings, and characterized realcompactness by means of continuous selections for Tychonoff spaces of non-measurable cardinal. Using their method, we obtain another characterization of realcompactness, but without any cardinal assumption. We also characterize Dieudonné completeness and Lindelöf property in similar formulations.
Valov proved a general version of Arvanitakis's simultaneous selection theorem which is a common generalization of both Michael's selection theorem and Dugundji's extension theorem. We show that Valov's theorem can be extended by applying an argument by means of Pettis integrals due to Repovš, Semenov and Shchepin.
Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an -subset of X such that and the restriction is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about...
The purpose of this paper is to introduce a definition of cliquishness for multifunctions and to study the search for cliquish, quasi-continuous and Baire measurable selections of compact valued multifunctions. A correction as well as a generalization of the results of [5] are given.
Let be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of is invertible and there exists an exponential semigroup of linear continuous selections of .
The purpose of this paper is the investigation of the necessary and sufficient conditions under which a given multifunctions admits a cliquish and measurable selection. Our investigation also covers the search for quasicontinuous selections for multifunctions which are continuous with respect to the generalized notion of the semi-quasicontinuity.
We study set-valued mappings of bounded variation of one real variable. First we prove the existence of an extension of a metric space valued mapping from a subset of the reals to the whole set of reals with preservation of properties of the initial mapping: total variation, Lipschitz constant or absolute continuity. Then we show that a set-valued mapping of bounded variation defined on an arbitrary subset of the reals admits a regular selection of bounded variation. We introduce a notion of generated...
The spaces for which each -continuous function can be extended to a -small point-open l.s.cṁultifunction (resp. point-closed u.s.cṁultifunction) are studied. Some sufficient conditions and counterexamples are given.
An open continuous map f from a space X onto a paracompact C-space Y admits two disjoint closed sets F₀,F₁ ⊂ X with f(F₀) = Y = f(F₁), provided all fibers of f are infinite and C*-embedded in X. Applications are given to the existence of "disjoint" usco multiselections of set-valued l.s.c. mappings defined on paracompact C-spaces, and to special type of factorizations of open continuous maps from metrizable spaces onto paracompact C-spaces. This settles several open questions.