Absolutely minimizing Lipschitz extensions on a metric space.
A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.
Interrelations between three concepts of terminal continua and their behaviour, when the underlying continuum is confluently mapped, are studied.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
We obtain generalizations of the Fan's matching theorem for an open (or closed) covering related to an admissible map. Each of these is restated as a KKM theorem. Finally, applications concerning coincidence theorems and section results are given.
For every n ≥ 2, let cc(ℝⁿ) denote the hyperspace of all nonempty compact convex subsets of the Euclidean space ℝⁿ endowed with the Hausdorff metric topology. Let cb(ℝⁿ) be the subset of cc(ℝⁿ) consisting of all compact convex bodies. In this paper we discover several fundamental properties of the natural action of the affine group Aff(n) on cb(ℝⁿ). We prove that the space E(n) of all n-dimensional ellipsoids is an Aff(n)-equivariant retract of cb(ℝⁿ). This is applied to show that cb(ℝⁿ) is homeomorphic...
Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism...
A countable CW complex K is quasi-finite (as defined by A. Karasev) if for every finite subcomplex M of K there is a finite subcomplex e(M) such that any map f: A → M, where A is closed in a separable metric space X satisfying XτK, has an extension g: X → e(M). Levin's results imply that none of the Eilenberg-MacLane spaces K(G,2) is quasi-finite if G ≠ 0. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many...