On semi-closed sets and semi-open sets and their applications
Let be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of is invertible and there exists an exponential semigroup of linear continuous selections of .
We construct an example of a Banach space E such that every weakly compact subset of E is bisequential and E contains a weakly compact subset which cannot be embedded in a Hilbert space equipped with the weak topology. This answers a question of Nyikos.