On strong convergence of multivalued maps
In the paper we obtain several characteristics of pre- of strongly preirresolute topological vector spaces and show that the extreme point of a convex subset of a strongly preirresolute topological vector space lies on the boundary.
In [7], M. Levin proved that the set of all Bing maps of a compact metric space to the unit interval is a dense -subset of the space of all maps. In [6], J. Krasinkiewicz independently proved that the set of all Bing maps of a compact metric space to an n-dimensional manifold (n ≥ 1) is a dense -subset of the space of maps. In [9], J. Song and E. D. Tymchatyn, solving some problems of J. Krasinkiewicz ([6]), proved that the set of all Bing maps of a compact metric space to a nondegenerate connected...
Solenoids are inverse limits of the circle, and the classical knot theory is the theory of tame embeddings of the circle into 3-space. We make a general study, including certain classification results, of tame embeddings of solenoids into 3-space, seen as the "inverse limits" of tame embeddings of the circle. Some applications in topology and in dynamics are discussed. In particular, there are tamely embedded solenoids Σ ⊂ ℝ³ which are strictly achiral. Since solenoids are non-planar,...
A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.
The purpose of this paper is the investigation of the necessary and sufficient conditions under which a given multifunctions admits a cliquish and measurable selection. Our investigation also covers the search for quasicontinuous selections for multifunctions which are continuous with respect to the generalized notion of the semi-quasicontinuity.