Previous Page 24

Displaying 461 – 478 of 478

Showing per page

Open mapping theorems for capacities

Oleh Nykyforchyn, Michael Zarichnyi (2011)

Fundamenta Mathematicae

For the functor of upper semicontinuous capacities in the category of compact Hausdorff spaces and two of its subfunctors, we prove open mapping theorems. These are counterparts of the open mapping theorem for the probability measure functor proved by Ditor and Eifler.

Open maps do not preserve Whyburn property

Franco Obersnel (2003)

Commentationes Mathematicae Universitatis Carolinae

We show that a (weakly) Whyburn space X may be mapped continuously via an open map f onto a non (weakly) Whyburn space Y . This fact may happen even between topological groups X and Y , f a homomorphism, X Whyburn and Y not even weakly Whyburn.

Open maps having the Bula property

Valentin Gutev, Vesko Valov (2009)

Fundamenta Mathematicae

An open continuous map f from a space X onto a paracompact C-space Y admits two disjoint closed sets F₀,F₁ ⊂ X with f(F₀) = Y = f(F₁), provided all fibers of f are infinite and C*-embedded in X. Applications are given to the existence of "disjoint" usco multiselections of set-valued l.s.c. mappings defined on paracompact C-spaces, and to special type of factorizations of open continuous maps from metrizable spaces onto paracompact C-spaces. This settles several open questions.

Open relations

Wilhelm, M. (1980)

Abstracta. 8th Winter School on Abstract Analysis

Openly factorizable spaces and compact extensions of topological semigroups

Taras O. Banakh, Svetlana Dimitrova (2010)

Commentationes Mathematicae Universitatis Carolinae

We prove that the semigroup operation of a topological semigroup S extends to a continuous semigroup operation on its Stone-Čech compactification β S provided S is a pseudocompact openly factorizable space, which means that each map f : S Y to a second countable space Y can be written as the composition f = g p of an open map p : X Z onto a second countable space Z and a map g : Z Y . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.

Order intervals in C ( K ) . Compactness, coincidence of topologies, metrizability

Zbigniew Lipecki (2022)

Commentationes Mathematicae Universitatis Carolinae

Let K be a compact space and let C ( K ) be the Banach lattice of real-valued continuous functions on K . We establish eleven conditions equivalent to the strong compactness of the order interval [ 0 , x ] in C ( K ) , including the following ones: (i) { x > 0 } consists of isolated points of K ; (ii) [ 0 , x ] is pointwise compact; (iii) [ 0 , x ] is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on [ 0 , x ] ; (v) the strong and weak topologies coincide on [ 0 , x ] . Moreover, the weak topology and that of pointwise convergence...

Ordered spaces and quasi-uniformities on spaces of continuous order-preserving functions.

Koena Rufus Nailana (2000)

Extracta Mathematicae

In this paper we introduce and investigate the notions of point open order topology, compact open order topology, the order topology of quasi-uniform pointwise convergence and the order topology of quasi-uniform convergence on compacta. We consider the functorial correspondence between function spaces in the categories of topological spaces, bitopological spaces and ordered topological spaces. We obtain extensions to the topological ordered case of classical topological results on function spaces....

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Ordinals in topological groups

Raushan Z. Buzyakova (2007)

Fundamenta Mathematicae

We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following statements:...

Currently displaying 461 – 478 of 478

Previous Page 24