Exchange PF-rings and almost PP-rings
The paper presents new quasicontinuous selection theorem for continuous multifunctions with closed values, being an arbitrary topological space. It is known that for with the Vietoris topology there is no continuous selection. The result presented here enables us to show that there exists a quasicontinuous and upperlower-semicontinuous selection for this space. Moreover, one can construct a selection whose set of points of discontinuity is nowhere dense.
Given a Tychonoff space and an infinite cardinal , we prove that exponential -domination in is equivalent to exponential -cofinality of . On the other hand, exponential -cofinality of is equivalent to exponential -domination in . We show that every exponentially -cofinal space has a -small diagonal; besides, if is -stable, then . In particular, any compact exponentially -cofinal space has weight not exceeding . We also establish that any exponentially -cofinal space with...
The purpose of this note is to prove the exponential law for uniformly continuous proper maps.
We show that exponential separability is an inverse invariant of closed maps with countably compact exponentially separable fibers. This implies that it is preserved by products with a scattered compact factor and in the products of sequential countably compact spaces. We also provide an example of a -compact crowded space in which all countable subspaces are scattered. If is a Lindelöf space and every with is scattered, then is functionally countable; if every with is scattered, then...
Given a subset A of a topological space X, a locally convex space Y, and a family ℂ of subsets of Y we study the problem of the existence of a linear ℂ-extender , which is a linear operator extending bounded continuous functions f: A → C ⊂ Y, C ∈ ℂ, to bounded continuous functions f̅ = u(f): X → C ⊂ Y. Two necessary conditions for the existence of such an extender are found in terms of a topological game, which is a modification of the classical strong Choquet game. The results obtained allow us...