Displaying 821 – 840 of 2509

Showing per page

Fixed Points of n-Valued Multimaps of the Circle

Robert F. Brown (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

A multifunction ϕ: X ⊸ Y is n-valued if ϕ(x) is an unordered subset of n points of Y for each x ∈ X. The (continuous) n-valued multimaps ϕ: S¹ ⊸ S¹ are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number N(ϕ) of an n-valued ϕ: S¹ ⊸ S¹ of degree d equals |n - d| and ϕ is homotopic to an n-valued power map that has exactly |n - d| fixed points. Thus the Wecken property, that Schirmer established for manifolds...

Fixed points of set-valued maps with closed proximally ∞-connected values

Grzegorz Gabor (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Introduction Many authors have developed the topological degree theory and the fixed point theory for set-valued maps using homological techniques (see for example [19, 28, 27, 16]). Lately, an elementary technique of single-valued approximation (on the graph) (see [11, 1, 13, 5, 9, 2, 6, 7]) has been used in constructing the fixed point index for set-valued maps with compact values (see [21, 20, 4]). In [20, 4] authors consider set-valued upper semicontinuous...

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In this situation...

Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem

Richard N. Ball, James N. Hagler (2003)

Czechoslovak Mathematical Journal

We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.

Four mapping problems of Maćkowiak

E. Grace, E. Vought (1996)

Colloquium Mathematicae

In his paper "Continuous mappings on continua" [5], T. Maćkowiak collected results concerning mappings on metric continua. These results are theorems, counterexamples, and unsolved problems and are listed in a series of tables at the ends of chapters. It is the purpose of the present paper to provide solutions (three proofs and one example) to four of those problems.

Frame monomorphisms and a feature of the l -group of Baire functions on a topological space

Richard N. Ball, Anthony W. Hager (2013)

Commentationes Mathematicae Universitatis Carolinae

“The kernel functor” W k LFrm from the category W of archimedean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular frames, preserves and reflects monics. In W , monics are one-to-one, but not necessarily so in LFrm. An embedding ϕ W for which k ϕ is one-to-one is termed kernel-injective, or KI; these are the topic of this paper. The situation is contrasted with kernel-surjective and -preserving (KS and KP). The W -objects every embedding of which is KI are characterized;...

Free spaces

Jian Song, E. Tymchatyn (2000)

Fundamenta Mathematicae

A space Y is called a free space if for each compactum X the set of maps with hereditarily indecomposable fibers is a dense G δ -subset of C(X,Y), the space of all continuous functions of X to Y. Levin proved that the interval I and the real line ℝ are free. Krasinkiewicz independently proved that each n-dimensional manifold M (n ≥ 1) is free and the product of any space with a free space is free. He also raised a number of questions about the extent of the class of free spaces. In this paper we will...

Function space topologies deriving from hypertopologies and networks

A. Di Concilio, A. Miranda (2001)

Bollettino dell'Unione Matematica Italiana

In un progetto di generalizzazione delle classiche topologie di tipo «set-open» di Arens-Dugundji introduciamo un metodo generale per produrre topologie in spazi di funzioni mediante l'uso di ipertopologie. Siano X , Y spazi topologici e C X , Y l'insieme delle funzioni continue da X verso Y . Fissato un «network» α nel dominio X ed una topologia τ nell'iperspazio C L Y del codominio Y si genera una topologia τ α in C X , Y richiedendo che una rete f λ di C X , Y converge in τ α ad f C X , Y se e solo se la rete f λ A ¯ converge in τ ad f A ¯ ...

Currently displaying 821 – 840 of 2509