Displaying 141 – 160 of 267

Showing per page

Some refinements of a selection theorem with O-dimensional domain

B. Michael (1992)

Fundamenta Mathematicae

The following known selection theorem is sharpened, primarily, by weakening the hypothesis that all the sets φ(x) are closed in Y: Let X be paracompact with dimX = 0, let Y be completely metrizable and let φ:X → 𝓕(Y) be l.s.c. Then φ has a selection.

Some relative properties on normality and paracompactness, and their absolute embeddings

Shinji Kawaguchi, Ryoken Sokei (2005)

Commentationes Mathematicae Universitatis Carolinae

Paracompactness ( = 2 -paracompactness) and normality of a subspace Y in a space X defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak C - or weak P -embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result is essentially...

Some remarks on the product of two C α -compact subsets

Salvador García-Ferreira, Manuel Sanchis, Stephen W. Watson (2000)

Czechoslovak Mathematical Journal

For a cardinal α , we say that a subset B of a space X is C α -compact in X if for every continuous function f X α , f [ B ] is a compact subset of α . If B is a C -compact subset of a space X , then ρ ( B , X ) denotes the degree of C α -compactness of B in X . A space X is called α -pseudocompact if X is C α -compact into itself. For each cardinal α , we give an example of an α -pseudocompact space X such that X × X is not pseudocompact: this answers a question posed by T. Retta in “Some cardinal generalizations of pseudocompactness”...

Some remarks providing discontinuous maps on some C p ( X ) spaces

S. Moll (2008)

Banach Center Publications

Let X be a completely regular Hausdorff topological space and C p ( X ) the space of continuous real-valued maps on X endowed with the pointwise topology. A simple and natural argument is presented to show how to construct on the space C p ( X ) , if X contains a homeomorphic copy of the closed interval [0,1], real-valued maps which are everywhere discontinuous but continuous on all compact subsets of C p ( X ) .

Currently displaying 141 – 160 of 267