Some properties of the ideal of continuous functions with pseudocompact support.
The following known selection theorem is sharpened, primarily, by weakening the hypothesis that all the sets φ(x) are closed in Y: Let X be paracompact with dimX = 0, let Y be completely metrizable and let φ:X → 𝓕(Y) be l.s.c. Then φ has a selection.
Paracompactness (-paracompactness) and normality of a subspace in a space defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak - or weak -embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result is essentially...
For a cardinal , we say that a subset of a space is -compact in if for every continuous function , is a compact subset of . If is a -compact subset of a space , then denotes the degree of -compactness of in . A space is called -pseudocompact if is -compact into itself. For each cardinal , we give an example of an -pseudocompact space such that is not pseudocompact: this answers a question posed by T. Retta in “Some cardinal generalizations of pseudocompactness”...
Let X be a completely regular Hausdorff topological space and the space of continuous real-valued maps on X endowed with the pointwise topology. A simple and natural argument is presented to show how to construct on the space , if X contains a homeomorphic copy of the closed interval [0,1], real-valued maps which are everywhere discontinuous but continuous on all compact subsets of .