Some new deterministic and random variational inequalities and their applications.
Let () be the -ring of all (bounded) real-measurable functions on a -measurable space , let be the family of all such that is compact, and let be all that is compact for any . We introduce realcompact subrings of , we show that is a realcompact subring of , and also is a realcompact if and only if is a compact measurable space. For every nonzero real Riesz map , we prove that there is an element such that for every if is a compact measurable space. We confirm...
A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.
Some properties of the Hausdorff distance in complete metric spaces are discussed. Results obtained in this paper explain ideas used in the theory of measures of noncompactness.