Two extension theorems for functions
We consider the spaces called , constructed on the set of all finite sequences of natural numbers using ultrafilters to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that is homogeneous if and only if all the ultrafilters have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to (i.e., for all ). It follows that for a Ramsey ultrafilter , is a topological group....
We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.
We prove a Dichotomy Theorem: for each Hausdorff compactification of an arbitrary topological group , the remainder is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...
A function is two-to-one if every point in the image has exactly two inverse points. We show that every two-to-one continuous image of ℕ* is homeomorphic to ℕ* when the continuum hypothesis is assumed. We also prove that there is no irreducible two-to-one continuous function whose domain is ℕ* under the same assumption.