Each concrete category has a representation by paracompact topological spaces
A space is discretely absolutely star-Lindelöf if for every open cover of and every dense subset of , there exists a countable subset of such that is discrete closed in and , where . We show that every Hausdorff star-Lindelöf space can be represented in a Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.
In [Fund. Math. 210 (2010), 1-46] we claimed the truth of two statements, one now known to be false and a second lacking a proof. In this "Errata" we report these matters in the interest of setting the record straight on the status of these claims.
The statement in the title solves a problem raised by T. Retta. We also present a variation of the result in terms of -compactness.