Page 1

Displaying 1 – 6 of 6

Showing per page

When is 𝐍 Lindelöf?

Horst Herrlich, George E. Strecker (1997)

Commentationes Mathematicae Universitatis Carolinae

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous at x , (8)...

Which topological spaces have a weak reflection in compact spaces?

Martin Maria Kovár (1995)

Commentationes Mathematicae Universitatis Carolinae

The problem, whether every topological space has a weak compact reflection, was answered by M. Hušek in the negative. Assuming normality, M. Hušek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces.

Currently displaying 1 – 6 of 6

Page 1