Natural covers
We investigate notions of -compactness for frames. We find that the analogues of equivalent conditions defining -compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame ‘-cubes’ are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial -compactness form a much larger class, and better embody what ‘-compact frames’ should be. This latter property is expressible without reference...
For Tychonoff and an infinite cardinal, let the minimum number of cozero-sets of the Čech-Stone compactification which intersect to (generalizing -defect), and let . Give the compact-open topology. It is shown that , where: is tightness; is the network character; is the Lindel"of number. For example, it follows that, for Čech-complete, . The (apparently new) cardinal functions and are compared with several others.
It is well-known that the concentric circle space has no -diagonal nor any countable point-separating open cover. In this paper, we reveal two new properties of the concentric circle space, which are the weak versions of -diagonal and countable point-separating open cover. Then we introduce two new cardinal functions and sharpen some known cardinal inequalities.
Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of .
We provide a necessary and sufficient condition under which a generalized ordered topological product (GOTP) of two GO-spaces is monotonically Lindelöf.