Displaying 61 – 80 of 133

Showing per page

On FU( p )-spaces and p -sequential spaces

Salvador García-Ferreira (1991)

Commentationes Mathematicae Universitatis Carolinae

Following Kombarov we say that X is p -sequential, for p α * , if for every non-closed subset A of X there is f α X such that f ( α ) A and f ¯ ( p ) X A . This suggests the following definition due to Comfort and Savchenko, independently: X is a FU( p )-space if for every A X and every x A - there is a function f α A such that f ¯ ( p ) = x . It is not hard to see that p RK q ( RK denotes the Rudin–Keisler order) every p -sequential space is q -sequential every FU( p )-space is a FU( q )-space. We generalize the spaces S n to construct examples of p -sequential...

On minimal strongly KC-spaces

Weihua Sun, Yuming Xu, Ning Li (2009)

Czechoslovak Mathematical Journal

In this article we introduce the notion of strongly KC -spaces, that is, those spaces in which countably compact subsets are closed. We find they have good properties. We prove that a space ( X , τ ) is maximal countably compact if and only if it is minimal strongly KC , and apply this result to study some properties of minimal strongly KC -spaces, some of which are not possessed by minimal KC -spaces. We also give a positive answer to a question proposed by O. T. Alas and R. G. Wilson, who asked whether every...

On p -sequential p -compact spaces

Salvador García-Ferreira, Angel Tamariz-Mascarúa (1993)

Commentationes Mathematicae Universitatis Carolinae

It is shown that a space X is L ( μ p ) -Weakly Fréchet-Urysohn for p ω * iff it is L ( ν p ) -Weakly Fréchet-Urysohn for arbitrary μ , ν < ω 1 , where μ p is the μ -th left power of p and L ( q ) = { μ q : μ < ω 1 } for q ω * . We also prove that for p -compact spaces, p -sequentiality and the property of being a L ( ν p ) -Weakly Fréchet-Urysohn space with ν < ω 1 , are equivalent; consequently if X is p -compact and ν < ω 1 , then X is p -sequential iff X is ν p -sequential (Boldjiev and Malyhin gave, for each P -point p ω * , an example of a compact space X p which is 2 p -Fréchet-Urysohn and it is...

On pseudo-radial spaces

Aleksander V. Arhangel'skii, Romano Isler, Gino Tironi (1986)

Commentationes Mathematicae Universitatis Carolinae

On spaces with point-countable k -systems

Iwao Yoshioka (2004)

Commentationes Mathematicae Universitatis Carolinae

This paper deals with the behavior of M -spaces, countably bi-quasi- k -spaces and singly bi-quasi- k -spaces with point-countable k -systems. For example, we show that every M -space with a point-countable k -system is locally compact paracompact, and every separable singly bi-quasi- k -space with a point-countable k -system has a countable k -system. Also, we consider equivalent relations among spaces entried in Table 1 in Michael’s paper [15] when the spaces have point-countable k -systems.

On spaces with the property of weak approximation by points

Angelo Bella (1994)

Commentationes Mathematicae Universitatis Carolinae

A sufficient condition that the product of two compact spaces has the property of weak approximation by points (briefly WAP) is given. It follows that the product of the unit interval with a compact WAP space is also a WAP space.

On -starcompact spaces

Yan-Kui Song (2006)

Czechoslovak Mathematical Journal

A space X is -starcompact if for every open cover 𝒰 of X , there exists a Lindelöf subset L of X such that S t ( L , 𝒰 ) = X . We clarify the relations between -starcompact spaces and other related spaces and investigate topological properties of -starcompact spaces. A question of Hiremath is answered.

On 𝒞 -starcompact spaces

Yan-Kui Song (2008)

Mathematica Bohemica

A space X is 𝒞 -starcompact if for every open cover 𝒰 of X , there exists a countably compact subset C of X such that St ( C , 𝒰 ) = X . In this paper we investigate the relations between 𝒞 -starcompact spaces and other related spaces, and also study topological properties of 𝒞 -starcompact spaces.

On the complexity of subspaces of S ω

Carlos Uzcátegui (2003)

Fundamenta Mathematicae

Let (X,τ) be a countable topological space. We say that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor set 2 X (via characteristic functions) is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skiĭ-Franklin space S ω is F σ δ . In this paper we study the complexity, in the sense of the Borel hierarchy, of subspaces of S ω . We show that S ω has subspaces with topologies of arbitrarily high Borel rank and it also has subspaces with a non-Borel topology. Moreover,...

Currently displaying 61 – 80 of 133