A Theorem On Spaces 2X With The Compact-Open Topology
We define combinatorial structures which we refer to as flat morasses, and use them to construct a Lindelöf space with points of cardinality , consistent with GCH. The construction reveals, it is hoped, that flat morasses are a tool worth adding to the kit of any user of set theory.
We get the following result. A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement. We positively answer a question of the strongly paracompact property.
We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5)....