Valdivia compact abelian groups.
We prove that the dual unit ball of a Banach space X is a Corson compactum provided that the dual unit ball with respect to every equivalent norm on X is a Valdivia compactum. As a corollary we show that the dual unit ball of a Banach space X of density is Corson if (and only if) X has a projectional resolution of the identity with respect to every equivalent norm. These results answer questions asked by M. Fabian, G. Godefroy and V. Zizler and yield a converse to Amir-Lindenstrauss’ theorem.
Various characterizations of realcompactness are transferred to uniform spaces giving non-equivalent concepts. Their properties, relations and characterizations are described in this paper. A Shirota-like characterization of certain uniform realcompactness proved by Garrido and Meroño for metrizable spaces is generalized to uniform spaces. The paper may be considered as a unifying survey of known results with some new results added.
For a given space X let C(X) be the family of all compact subsets of X. A space X is dominated by a space M if X has an M-ordered compact cover, this means that there exists a family F = FK : K ∈ C(M) ⊂ C(X) such that ∪ F = X and K ⊂ L implies that FK ⊂ FL for any K;L ∈ C(M). A space X is strongly dominated by a space M if there exists an M-ordered compact cover F such that for any compact K ⊂ X there is F ∈ F such that K ⊂ F . Let K(X) D C(X){Øbe the set of all nonempty compact subsets of a space...