Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Wallman-type compaerifications and function lattices

Alessandro Caterino, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let F C ( X ) be a vector sublattice over which separates points from closed sets of X . The compactification e F X obtained by embedding X in a real cube via the diagonal map, is different, in general, from the Wallman compactification ω ( Z ( F ) ) . In this paper, it is shown that there exists a lattice F z containing F such that ω ( Z ( F ) ) = ω ( Z ( F z ) ) = e F X . In particular this implies that ω ( Z ( F ) ) e F X . Conditions in order to be ω ( Z ( F ) ) = e F X are given. Finally we prove that, if α X is a compactification of X such that C l α X ( α X X ) is 0 -dimensional, then there is an algebra A C a s t ( X ) such...

Weak extent in normal spaces

Ronnie Levy, Mikhail Matveev (2005)

Commentationes Mathematicae Universitatis Carolinae

If X is a space, then the weak extent we ( X ) of X is the cardinal min { α : If 𝒰 is an open cover of X , then there exists A X such that | A | = α and St ( A , 𝒰 ) = X } . In this note, we show that if X is a normal space such that | X | = 𝔠 and we ( X ) = ω , then X does not have a closed discrete subset of cardinality 𝔠 . We show that this result cannot be strengthened in ZFC to get that the extent of X is smaller than 𝔠 , even if the condition that we ( X ) = ω is replaced by the stronger condition that X is separable.

Weak orderability of some spaces which admit a weak selection

Camillo Costantini (2006)

Commentationes Mathematicae Universitatis Carolinae

We show that if a Hausdorff topological space X satisfies one of the following properties: a) X has a countable, discrete dense subset and X 2 is hereditarily collectionwise Hausdorff; b) X has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on X implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.

Weak selections and weak orderability of function spaces

Valentin Gutev (2010)

Czechoslovak Mathematical Journal

It is proved that for a zero-dimensional space X , the function space C p ( X , 2 ) has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if X is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space E , the function space C p ( X , E ) is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial...

Weak-bases and D -spaces

Dennis K. Burke (2007)

Commentationes Mathematicae Universitatis Carolinae

It is shown that certain weak-base structures on a topological space give a D -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are D -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space X is a D -space ( hereditarily ) . Hence, quotient mappings, with compact fibers, from metric spaces have a D -space image. What about quotient s -mappings? Arhangel’skii and Buzyakova have shown that...

Weakly infinite-dimensional compactifications and countable-dimensional compactifications

Takashi Kimura, Chieko Komoda (2008)

Commentationes Mathematicae Universitatis Carolinae

In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.

Weak-open compact images of metric spaces

Sheng Xiang Xia (2008)

Czechoslovak Mathematical Journal

The main results of this paper are that (1) a space X is g -developable if and only if it is a weak-open π image of a metric space, one consequence of the result being the correction of an error in the paper of Z. Li and S. Lin; (2) characterizations of weak-open compact images of metric spaces, which is another answer to a question in in the paper of Y. Ikeda, C. liu and Y. Tanaka.

Currently displaying 1 – 20 of 27

Page 1 Next