Baire spaces, -spaces, and some properly hereditary properties.
A topological space is called base-base paracompact (John E. Porter) if it has an open base such that every base has a locally finite subcover . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
Let be a smooth Riemannian manifold of finite volume, its Laplace (-Beltrami) operator. Canonical direct-sum decompositions of certain subspaces of the Wiener and Royden algebras of are found, and for biharmonic functions (those for which ) the decompositions are related to the values of the functions and their Laplacians on appropriate ideal boundaries.
The purpose of the present paper is to define and study -closed sets in closure spaces obtained as generalization of the usual closed sets. We introduce the concepts of -continuous and -closed maps by using -closed sets and investigate some of their properties.
Compactifications of biframes are defined, and characterized internally by means of strong inclusions. The existing description of the compact, zero-dimensional coreflection of a biframe is used to characterize all zero-dimensional compactifications, and a criterion identifying them by their strong inclusions is given. In contrast to the above, two sufficient conditions and several examples show that the existence of smallest biframe compactifications differs significantly from the corresponding...
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík,...
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.