Displaying 101 – 120 of 387

Showing per page

On finest unitary extensions of topological monoids

Boris G. Averbukh (2015)

Topological Algebra and its Applications

We prove that the Wyler completion of the unitary Cauchy space on a given Hausdorff topological 5 monoid consisting of the underlying set of this monoid and of the family of unitary Cauchy filters on it, is a T2-topological space and, in the commutative case, an abstract monoid containing the initial one.

On finite powers of countably compact groups

Artur Hideyuki Tomita (1996)

Commentationes Mathematicae Universitatis Carolinae

We will show that under M A c o u n t a b l e for each k there exists a group whose k -th power is countably compact but whose 2 k -th power is not countably compact. In particular, for each k there exists l [ k , 2 k ) and a group whose l -th power is countably compact but the l + 1 -st power is not countably compact.

On FU( p )-spaces and p -sequential spaces

Salvador García-Ferreira (1991)

Commentationes Mathematicae Universitatis Carolinae

Following Kombarov we say that X is p -sequential, for p α * , if for every non-closed subset A of X there is f α X such that f ( α ) A and f ¯ ( p ) X A . This suggests the following definition due to Comfort and Savchenko, independently: X is a FU( p )-space if for every A X and every x A - there is a function f α A such that f ¯ ( p ) = x . It is not hard to see that p RK q ( RK denotes the Rudin–Keisler order) every p -sequential space is q -sequential every FU( p )-space is a FU( q )-space. We generalize the spaces S n to construct examples of p -sequential...

On hereditarily normal topological groups

(2012)

Fundamenta Mathematicae

We investigate hereditarily normal topological groups and their subspaces. We prove that every compact subspace of a hereditarily normal topological group is metrizable. To prove this statement we first show that a hereditarily normal topological group with a non-trivial convergent sequence has G δ -diagonal. This implies, in particular, that every countably compact subspace of a hereditarily normal topological group with a non-trivial convergent sequence is metrizable. Another corollary is that under...

On hereditary normality of ω * , Kunen points and character ω 1

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

We show that ω * { p } is not normal, if p is a limit point of some countable subset of ω * , consisting of points of character ω 1 . Moreover, such a point p is a Kunen point and a super Kunen point.

Currently displaying 101 – 120 of 387