The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that a version of López-Escobar’s theorem holds in the setting of model theory for metric structures. More precisely, let denote the Urysohn sphere and let Mod(,) be the space of metric -structures supported on . Then for any Iso()-invariant Borel function f: Mod(,) → [0,1], there exists a sentence ϕ of such that for all M ∈ Mod(,) we have . This answers a question of Ivanov and Majcher-Iwanow. We prove several consequences, for example every orbit equivalence relation of a Polish group...
Let G be a group which acts by homeomorphisms on a metric space X. We say the action of G is locally moving on X if for every open U ⊆ X there is a g ∈ G such that g↾X ≠ Id while g↾(X∖U) = Id. We prove the following theorem:
Theorem A. Let X,Y be completely metrizable spaces and let G be a group which acts on X and Y with locally moving actions. If the orbits of the action of G on X are of the second category in X and the orbits of the action of G on Y are of the second category...
Mostriamo che se è uno spazio metrico completo, allora è completa anche la metrica , indotta in modo naturale da sul sottospazio degli insiemi sfocati («fuzzy») di dati dalle quantità approssimate. Come è ben noto, è una metrica molto interessante nella teoria dei punti fissi di applicazioni sfocate, poiché permette di ottenere risultati soddisfacenti in questo contesto.
Currently displaying 1 –
14 of
14