Baire sets and uniformities on complete metric spaces
We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a uniformization which is the graph of a -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with sections.