The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Weakly complete semimetrizable spaces and complete metrizability.

Salvador Romaguera, Sam D. Shore (1996)

Extracta Mathematicae

In [4], J. Ceder proved that every paracompact strongly complete semimetrizable space is completely metrizable. This result cannot be generalized to paracompact weakly complete semimetrizable spaces as a known example of L. F. McAuley shows (see [11, Theorem 3.2]). It then arises, in a natural way, the question of obtaining conditions for the complete metrizability of a paracompact weakly complete semimetrizable space. In this note we give an answer to this question. We show that every regular theta,...

When C p ( X ) is domain representable

William Fleissner, Lynne Yengulalp (2013)

Fundamenta Mathematicae

Let M be a metrizable group. Let G be a dense subgroup of M X . We prove that if G is domain representable, then G = M X . The following corollaries answer open questions. If X is completely regular and C p ( X ) is domain representable, then X is discrete. If X is zero-dimensional, T₂, and C p ( X , ) is subcompact, then X is discrete.

Currently displaying 1 – 3 of 3

Page 1