Displaying 201 – 220 of 307

Showing per page

On Szymański theorem on hereditary normality of β ω

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

We discuss the following result of A. Szymański in “Retracts and non-normality points" (2012), Corollary 3.5.: If F is a closed subspace of ω * and the π -weight of F is countable, then every nonisolated point of F is a non-normality point of ω * . We obtain stronger results for all types of points, excluding the limits of countable discrete sets considered in “Some non-normal subspaces of the Čech–Stone compactification of a discrete space” (1980) by A. Błaszczyk and A. Szymański. Perhaps our proofs...

On the complexity of Hamel bases of infinite-dimensional Banach spaces

Lorenz Halbeisen (2001)

Colloquium Mathematicae

We call a subset S of a topological vector space V linearly Borel if for every finite number n, the set of all linear combinations of S of length n is a Borel subset of V. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.

On the density of the hyperspace of a metric space

Alberto Barbati, Camillo Costantini (1997)

Commentationes Mathematicae Universitatis Carolinae

We calculate the density of the hyperspace of a metric space, endowed with the Hausdorff or the locally finite topology. To this end, we introduce suitable generalizations of the notions of totally bounded and compact metric space.

Currently displaying 201 – 220 of 307