A converse to a theorem of K. Kuratowski on parametrizations of compacta on the Cantor set
We prove there is a countable dense homogeneous subspace of ℝ of size ℵ₁. The proof involves an absoluteness argument using an extension of the logic obtained by adding predicates for Borel sets.
In the first part of the paper, we define an approximated Brunn-Minkowski inequality which generalizes the classical one for metric measure spaces. Our new definition, based only on properties of the distance, allows also us to deal with discrete metric measure spaces. Then we show the stability of our new inequality under convergence of metric measure spaces. This result gives as corollary the stability of the classical Brunn-Minkowski inequality for geodesic spaces. The proof of this stability...
We prove a factorization theorem for transfinite kernel dimension in the class of metrizable spaces. Our result in conjunction with Pasynkov's technique implies the existence of a universal element in the class of metrizable spaces of given weight and transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.
Following the ideas of R. DeMarr, we establish a Galois connection between distance functions on a set and inequality relations on . Moreover, we also investigate a relationship between the functions of and .
We introduce a two player topological game and study the relationship of the existence of winning strategies to base properties and covering properties of the underlying space. The existence of a winning strategy for one of the players is conjectured to be equivalent to the space have countable network weight. In addition, connections to the class of D-spaces and the class of hereditarily Lindelöf spaces are shown.