Invariant metric properties of maps
Previous Page 2
Benjamin Halpern (1971)
Fundamenta Mathematicae
Bogusław Hajduk, Rafał Walczak (2003)
Czechoslovak Mathematical Journal
Let be a -space such that the orbit space is metrizable. Suppose a family of slices is given at each point of . We study a construction which associates, under some conditions on the family of slices, with any metric on an invariant metric on . We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
Errikos Papatriantafillou (1971)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
T. Przymusiński (1973)
Colloquium Mathematicae
Zahradník, Miloš (1975)
Seminar Uniform Spaces
Nhu Nguyen (1984)
Fundamenta Mathematicae
Pyrih, Pavel, Bárta, Tomáš, Opěla, David, Růžička, Pavel, Šámal, Robert (2001)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Pyrih, Pavel, Bárta, Tomáš, Opěla, David, Růžička, Pavel, Šámal, Robert (1999)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Viacheslav I. Malykhin (1999)
Commentationes Mathematicae Universitatis Carolinae
We construct in Bell-Kunen’s model: (a) a group maximal topology on a countable infinite Boolean group of weight and (b) a countable irresolvable dense subspace of . In this model .
Peter M. Gruber (1980)
Colloquium Mathematicae
Reinhard Wobst (1975)
Studia Mathematica
Jiří Rachůnek (1984)
Czechoslovak Mathematical Journal
G. Mägerl, S. Graf (1984)
Monatshefte für Mathematik
Bogdana Oliynyk (2013)
Open Mathematics
We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.
Vinárek, J. (1981)
Abstracta. 9th Winter School on Abstract Analysis
Stephen Bloom (1982)
Banach Center Publications
Previous Page 2