Local Lipschitz property for the Chebyshev center mapping over N-nets
We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding...
In this paper -quotient maps and -spaces are introduced. It is shown that (1) countable tightness is characterized by -quotient maps and quotient maps; (2) a space has countable tightness if and only if it is a countably bi-quotient image of a locally countable space, which gives an answer for a question posed by F. Siwiec in 1975; (3) -spaces are characterized as the -quotient images of metric spaces; (4) assuming , a compact -space is an -space if and only if every countably compact subset...
In this paper we improve some mapping theorems on -spaces. For instance we show that an -space is preserved by a closed and countably bi-quotient map. This is an improvement of Yun Ziqiu’s theorem: an -space is preserved by a closed and open map.
We prove that if f: X → Y is a closed surjective map between metric spaces such that every fiber belongs to a class S of spaces, then there exists an -set A ⊂ X such that A ∈ S and for all y ∈ Y. Here, S can be one of the following classes: (i) M: e-dim M ≤ K for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if S = M: dim M ≤ n, then dim f ∆ g ≤ 0 for almost all .
ℒ denotes the Lebesgue measurable subsets of ℝ and denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ$ℒ0 which is a subset of or misses M (a similar statement omitting “is a subset of or” characterizes ). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the “Marczewski measurable sets” and the σ-ideal which we call the “Marczewski null sets”. M ∈ (s) if every perfect set P has...