Displaying 781 – 800 of 1678

Showing per page

Non-subharmonicity of the Hausdorff distance

Edoardo Vesentini (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra con esempi che la distanza di Hausdorff-Carathéodory fra i valori di funzioni multivoche, analitiche secondo Oka, non è subarmonica.

Norm continuity of weakly quasi-continuous mappings

Alireza Kamel Mirmostafaee (2011)

Colloquium Mathematicae

Let be the class of Banach spaces X for which every weakly quasi-continuous mapping f: A → X defined on an α-favorable space A is norm continuous at the points of a dense G δ subset of A. We will show that this class is stable under c₀-sums and p -sums of Banach spaces for 1 ≤ p < ∞.

Normal Vietoris implies compactness: a short proof

G. Di Maio, E. Meccariello, Somashekhar Naimpally (2004)

Czechoslovak Mathematical Journal

One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.

Notes on c f p -covers

Shou Lin, Peng Fei Yan (2003)

Commentationes Mathematicae Universitatis Carolinae

The main purpose of this paper is to establish general conditions under which T 2 -spaces are compact-covering images of metric spaces by using the concept of c f p -covers. We generalize a series of results on compact-covering open images and sequence-covering quotient images of metric spaces, and correct some mapping characterizations of g -metrizable spaces by compact-covering σ -maps and m s s c -maps.

Currently displaying 781 – 800 of 1678