On natural merotopies
In the present note we study the effective construction of a natural generalized metric structure (on a set), obtaining as particular case the result of Menger. In the case of groups, we analyze its topology and its structure of natural proximity space (in the sense of Efremovic).
Let a space be Tychonoff product of -many Tychonoff nonsingle point spaces . Let Suslin number of be strictly less than the cofinality of . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification . In particular, this is true if is either or and a cardinal is infinite and not countably cofinal.