Some properties of convex metric spaces
In questa Nota, dati uno spazio metrico perfetto ed un suo sottoinsieme chiuso e raro, si dimostra l'esistenza di una funzione continua tale che per ogni , per ogni e per qualche . In particolare, ciò permette di dare risposta simultaneamente a due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale risultato.
Some properties of the Hausdorff distance in complete metric spaces are discussed. Results obtained in this paper explain ideas used in the theory of measures of noncompactness.
If p ∈ Rn, then we have the radial projection map from Rn {p} onto a sphere. Sometimes one can construct similar mappings on metric spaces even when the space is nontrivially different from Euclidean space, so that the existence of such a mapping becomes a sign of approximately Euclidean geometry. The existence of such spherical mappings can be used to derive estimates for the values of a function in terms of its gradient, which can then be used to derive Sobolev inequalities, etc. In this paper...