Displaying 141 – 160 of 307

Showing per page

On natural metrics.

Claudi Alsina, Enric Trillas (1977)

Stochastica

In the present note we study the effective construction of a natural generalized metric structure (on a set), obtaining as particular case the result of Menger. In the case of groups, we analyze its topology and its structure of natural proximity space (in the sense of Efremovic).

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.

On preimages of ultrafilters in ZF

Horst Herrlich, Paul Howard, Kyriakos Keremedis (2016)

Commentationes Mathematicae Universitatis Carolinae

We show that given infinite sets X , Y and a function f : X Y which is onto and n -to-one for some n , the preimage of any ultrafilter of Y under f extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model with a set of atoms A and a finite-to-one onto function f : A ω such that for each free ultrafilter of ω its preimage under f does not extend to an ultrafilter. In addition, we show that in there exists an ultrafilter compact pseudometric...

Currently displaying 141 – 160 of 307