The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 301 –
320 of
479
We prove that if f is a k-dimensional map on a compact metrizable space X then there exists a σ-compact (k-1)-dimensional subset A of X such that f|X∖A is 1-dimensional. Equivalently, there exists a map g of X in such that dim(f × g)=1. These are extensions of theorems by Toruńczyk and Pasynkov obtained under the additional assumption that f(X) is finite-dimensional.
These results are then extended to maps with fibers restricted to some classes of spaces other than the class of k-dimensional...
The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed.
A Mazurkiewicz set is a subset of a plane with the property that each straight line intersects in exactly two points. We modify the original construction to obtain a Mazurkiewicz set which does not contain vertices of an equilateral triangle or a square. This answers some questions by L.D. Loveland and S.M. Loveland. We also use similar methods to construct a bounded noncompact, nonconnected generalized Mazurkiewicz set.
We show that a metrizable continuum X is locally connected if and only if every partition in the cylinder over X between the bottom and the top of the cylinder contains a connected partition between these sets.
J. Krasinkiewicz asked whether for every metrizable continuum X there exists a partiton L between the top and the bottom of the cylinder X × I such that L is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a construction...
Currently displaying 301 –
320 of
479