On universality of finite powers of locally path-connected meager spaces
It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is 𝓐₁[n]-universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also a one-dimensional σ-compact absolute retract X is found such that the power X^{n+1} is 𝓐₁[n]-universal for every n.