Displaying 141 – 160 of 213

Showing per page

On universality of finite powers of locally path-connected meager spaces

Taras Banakh, Robert Cauty (2005)

Colloquium Mathematicae

It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is 𝓐₁[n]-universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also a one-dimensional σ-compact absolute retract X is found such that the power X^{n+1} is 𝓐₁[n]-universal for every n.

Planar rational compacta

L. Feggos, S. Iliadis, S. Zafiridou (1995)

Colloquium Mathematicae

In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.

Pseudo-homotopies of the pseudo-arc

Alejandro Illanes (2012)

Commentationes Mathematicae Universitatis Carolinae

Let X be a continuum. Two maps g , h : X X are said to be pseudo-homotopic provided that there exist a continuum C , points s , t C and a continuous function H : X × C X such that for each x X , H ( x , s ) = g ( x ) and H ( x , t ) = h ( x ) . In this paper we prove that if P is the pseudo-arc, g is one-to-one and h is pseudo-homotopic to g , then g = h . This theorem generalizes previous results by W. Lewis and M. Sobolewski.

Research Article. Multiscale Analysis of 1-rectifiable Measures II: Characterizations

Matthew Badger, Raanan Schul (2017)

Analysis and Geometry in Metric Spaces

A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an L2 gauge the extent to which μ admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical theorems...

Currently displaying 141 – 160 of 213