The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A two-point set is a subset of the plane which meets every line in exactly two points. By working in models of set theory other than ZFC, we demonstrate two new constructions of two-point sets. Our first construction shows that in ZFC + CH there exist two-point sets which are contained within the union of a countable collection of concentric circles. Our second construction shows that in certain models of ZF, we can show the existence of two-point sets without explicitly invoking the Axiom of Choice....
We give several topological/combinatorial conditions that, for a filter on ω, are equivalent to being a non-meager -filter. In particular, we show that a filter is countable dense homogeneous if and only if it is a non-meager -filter. Here, we identify a filter with a subspace of through characteristic functions. Along the way, we generalize to non-meager -filters a result of Miller (1984) about -points, and we employ and give a new proof of results of Marciszewski (1998). We also employ a theorem...
In the present paper we introduce a convergence condition and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
In this paper we extend the notion of quasinormal convergence via ideals and consider the notion of -quasinormal convergence. We then introduce the notion of space as a topological space in which every sequence of continuous real valued functions pointwise converging to , is also -quasinormally convergent to (has a subsequence which is -quasinormally convergent to ) and make certain observations on those spaces.
Quasi -spaces are defined to be those Tychonoff spaces such that each prime -ideal of is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of -spaces. The compact quasi -spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi -spaces is given. If is a cozero-complemented space and every nowhere dense zeroset...
Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space of this kind the inequality “" holds.
Currently displaying 1 –
7 of
7