Derived length for arbitrary topological spaces.
It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.
Let be a Hausdorff space and let be one of the hyperspaces , , or ( a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a -space, -space or weak -space and hereditary disconnectedness. Our main result states: if is Hausdorff and is a closed subset such that (a) both and are totally disconnected, (b) the quotient is hereditarily disconnected, then is hereditarily disconnected. We also...
Utilizing the discrete homotopy methods developed for uniform spaces by Berestovskii-Plaut, we define the critical spectrum Cr(X) of a metric space, generalizing to the non-geodesic case the covering spectrum defined by Sormani-Wei and the homotopy critical spectrum defined by Plaut-Wilkins. If X is geodesic, Cr(X) is the same as the homotopy critical spectrum, which differs from the covering spectrum by a factor of 3/2. The latter two spectra are known to be discrete for compact geodesic spaces,...