Page 1

Displaying 1 – 5 of 5

Showing per page

Disconnectedness properties of hyperspaces

Rodrigo Hernández-Gutiérrez, Angel Tamariz-Mascarúa (2011)

Commentationes Mathematicae Universitatis Carolinae

Let X be a Hausdorff space and let be one of the hyperspaces C L ( X ) , 𝒦 ( X ) , ( X ) or n ( X ) ( n a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a F ' -space, P -space or weak P -space and hereditary disconnectedness. Our main result states: if X is Hausdorff and F X is a closed subset such that (a) both F and X - F are totally disconnected, (b) the quotient X / F is hereditarily disconnected, then 𝒦 ( X ) is hereditarily disconnected. We also...

Discrete homotopy theory and critical values of metric spaces

Jim Conant, Victoria Curnutte, Corey Jones, Conrad Plaut, Kristen Pueschel, Maria Lusby, Jay Wilkins (2014)

Fundamenta Mathematicae

Utilizing the discrete homotopy methods developed for uniform spaces by Berestovskii-Plaut, we define the critical spectrum Cr(X) of a metric space, generalizing to the non-geodesic case the covering spectrum defined by Sormani-Wei and the homotopy critical spectrum defined by Plaut-Wilkins. If X is geodesic, Cr(X) is the same as the homotopy critical spectrum, which differs from the covering spectrum by a factor of 3/2. The latter two spectra are known to be discrete for compact geodesic spaces,...

Currently displaying 1 – 5 of 5

Page 1