Page 1

Displaying 1 – 13 of 13

Showing per page

P λ -sets and skeletal mappings

Aleksander Błaszczyk, Anna Brzeska (2013)

Colloquium Mathematicae

We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by P λ -filters and λ ≤ , then Seq is a P λ -set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.

Pasting topological spaces at one point

Ali Rezaei Aliabad (2006)

Czechoslovak Mathematical Journal

Let { X α } α Λ be a family of topological spaces and x α X α , for every α Λ . Suppose X is the quotient space of the disjoint union of X α ’s by identifying x α ’s as one point σ . We try to characterize ideals of C ( X ) according to the same ideals of C ( X α ) ’s. In addition we generalize the concept of rank of a point, see [9], and then answer the following two algebraic questions. Let m be an infinite cardinal. (1) Is there any ring R and I an ideal in R such that I is an irreducible intersection of m prime ideals? (2) Is there...

Productively Fréchet spaces

Francis Jordan, Frédéric Mynard (2004)

Czechoslovak Mathematical Journal

We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet.

Products of non- σ -lower porous sets

Martin Rmoutil (2013)

Czechoslovak Mathematical Journal

In the present article we provide an example of two closed non- σ -lower porous sets A , B such that the product A × B is lower porous. On the other hand, we prove the following: Let X and Y be topologically complete metric spaces, let A X be a non- σ -lower porous Suslin set and let B Y be a non- σ -porous Suslin set. Then the product A × B is non- σ -lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non- σ -lower porous sets in topologically...

Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar (2017)

Commentationes Mathematicae Universitatis Carolinae

In this paper we construct a Kelley continuum X such that X × [ 0 , 1 ] is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace C ( X ) is not semi- Kelley. Further we show that small Whitney levels in C ( X ) are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.

Pseudoradial Spaces: Finite Products and an Example From CH

Simon, Petr, Tironi, Gino (1998)

Serdica Mathematical Journal

∗ The first named author’s research was partially supported by GAUK grant no. 350, partially by the Italian CNR. Both supports are gratefully acknowledged. The second author was supported by funds of Italian Ministery of University and by funds of the University of Trieste (40% and 60%).Aiming to solve some open problems concerning pseudoradial spaces, we shall present the following: Assuming CH, there are two semiradial spaces without semi-radial product. A new property of pseudoradial spaces...

Currently displaying 1 – 13 of 13

Page 1