A property of the Sorgenfrey line
S. Solecki proved that if is a system of closed subsets of a complete separable metric space , then each Suslin set which cannot be covered by countably many members of contains a set which cannot be covered by countably many members of . We show that the assumption of separability of cannot be removed from this theorem. On the other hand it can be removed under an extra assumption that the -ideal generated by is locally determined. Using Solecki’s arguments, our result can be used...
It is proved that the class of separable Rosenthal compacta on the Cantor set having a uniformly bounded dense sequence of continuous functions is strongly bounded.
A closed subset of the real line which is right porous but is not -left-porous is constructed.
We study a class of abelian groups that can be defined as Polish pro-countable groups, as non-archimedean groups with a compatible two-sided invariant metric or as quasi-countable groups, i.e., closed subdirect products of countable discrete groups, endowed with the product topology. We show that for every non-locally compact, abelian quasi-countable group G there exists a closed L ≤ G and a closed, non-locally compact K ≤ G/L which is a direct product of discrete countable groups....
2000 Mathematics Subject Classification: 54H05, 03E15, 46B26We answer positively a question raised by S. Argyros: Given any coanalytic, nonalytic subset Σ′ of the irrationals, we construct, in Mercourakis space c1(Σ′), an adequate compact which is Gul’ko and not Talagrand. Further, given any Borel, non Fσ subset Σ′ of the irrationals, we construct, in c1(Σ′), an adequate compact which is Talagrand and not Eberlein.Supported by grants AV CR 101-90-03, and GA CR 201-01-1198
We give an abstract version of Sierpiński's theorem which says that the closure in the uniform convergence topology of the algebra spanned by the sums of lower and upper semicontinuous functions is the class of all Baire 1 functions. Later we show that a natural generalization of Sierpiński's result for the uniform closure of the space of all sums of A and CA functions is not true. Namely we show that the uniform closure of the space of all sums of A and CA functions is a proper subclass of the...
We generalize to the non-separable context a theorem of Levi characterizing Baire analytic spaces. This allows us to prove a joint-continuity result for non-separable normed groups, previously known only in the separable context.