Loading [MathJax]/extensions/MathZoom.js
Jayne and Rogers proved that every function from an analytic space into a separable metrizable space is decomposable into countably many continuous functions with closed domains if and only if the preimage of each set under that function is again . Many researchers conjectured that the Jayne-Rogers theorem can be generalized to all finite levels of Borel functions. In this paper, by using the Shore-Slaman join theorem on the Turing degrees, we show the following variant of the Jayne-Rogers theorem...
Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets and of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient conditions...
We relate some subsets of the product of nonseparable Luzin (e.g., completely metrizable) spaces to subsets of in a way which allows to deduce descriptive properties of from corresponding theorems on . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points in with particular properties of fibres of a mapping . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.
We study the descriptive set theoretical complexity of various randomness notions.
This paper was extensively circulated in manuscript form beginning
in the Summer of 1989. It is being published here for the first time in
its original form except for minor corrections, updated references and some
concluding comments.
There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation is Borel reducible to E. (C) is only proved for special cases as in [So].
In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space of real sequences, i.e., subspaces such that ...
Currently displaying 1 –
10 of
10