Loading [MathJax]/extensions/MathZoom.js
Nous donnons, pour une certaine catégorie de boréliens d'un produit de deux espaces polonais, comprenant les boréliens à coupes dénombrables, une caractérisation du type "test d'Hurewicz" de ceux ne pouvant pas être rendus différence transfinie d'ouverts par changement des deux topologies polonaises.
The set of squares in the group of autohomeomorphisms of the circle is complete analytic, and hence analytic but not Borel.
The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of .
We give an example of an extremally disconnected compact Hausdorff space with an open continuous selfmap such that the fixed point set is nonvoid and nowhere dense, respṫhat there is exactly one nonisolated fixed point.
It is known that there is a comeagre set of mutually conjugate measure preserving homeomorphisms of Cantor space equipped with the coinflipping probability measure, i.e., Haar measure. We show that the generic measure preserving homeomorphism is moreover conjugate to all of its powers. It follows that the generic measure preserving homeomorphism extends to an action of (ℚ, +) by measure preserving homeomorphisms, and, in fact, to an action of the locally compact ring 𝔄 of finite adèles.
...
We show a general method of construction of non--porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non--porous Suslin subset of a topologically complete metric space contains a non--porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non--porous element. Namely, if we denote the space of all compact subsets of a compact metric space with the Vietoris topology...
Let C(X) be the set of all convex and continuous functions on a separable infinite dimensional Banach space X, equipped with the topology of uniform convergence on bounded subsets of X. We show that the subset of all convex Fréchet-differentiable functions on X, and the subset of all (not necessarily equivalent) Fréchet-differentiable norms on X, reduce every coanalytic set, in particular they are not Borel-sets.
We prove that the σ-ideal I(E) (of closed smooth sets with respect to a non-smooth Borel equivalence relation E) does not have the covering property. In fact, the same holds for any σ-ideal containing the closed transversals with respect to an equivalence relation generated by a countable group of homeomorphisms. As a consequence we show that I(E) does not have a Borel basis.
Currently displaying 1 –
20 of
23