The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, . We show:
Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m, or α > ω and , then G admits a pseudocompact group topology of weight α.
Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies .
Theorem 5.2(b). If G is divisible Abelian with , then G admits at most -many...
We study when a topological space has a weaker connected topology. Various sufficient and necessary conditions are given for a space to have a weaker Hausdorff or regular connected topology. It is proved that the property of a space of having a weaker Tychonoff topology is preserved by any of the free topological group functors. Examples are given for non-preservation of this property by “nice” continuous mappings. The requirement that a space have a weaker Tychonoff connected topology is rather...
R. A. Johnson showed that there is no translation-invariant Borel lifting for the measure algebra of ℝ/ℤ equipped with Haar measure, a result which was generalized by M. Talagrand to non-discrete locally compact abelian groups and by J. Kupka and K. Prikry to arbitrary non-discrete locally compact groups. In this paper we study analogs of these results for category algebras (the Borel σ-algebra modulo the ideal of first category sets) of topological groups. Our main results are for the class of...
Currently displaying 1 –
4 of
4