-neighborhood groups.
It is established that a remainder of a non-locally compact topological group has the Baire property if and only if the space is not Čech-complete. We also show that if is a non-locally compact topological group of countable tightness, then either is submetrizable, or is the Čech-Stone remainder of an arbitrary remainder of . It follows that if and are non-submetrizable topological groups of countable tightness such that some remainders of and are homeomorphic, then the spaces...
The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable...
Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains “many” discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This...
Throughout this abstract, is a topological Abelian group and is the space of continuous homomorphisms from into the circle group in the compact-open topology. A dense subgroup of is said to determine if the (necessarily continuous) surjective isomorphism given by is a homeomorphism, and is determined if each dense subgroup of determines . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...
For any topological group the dual object is defined as the set of equivalence classes of irreducible unitary representations of equipped with the Fell topology. If is compact, is discrete. In an earlier paper we proved that is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when is an almost metrizable precompact group.
We show that there exist -metrizable spaces which do not have the Dugundji extension property ( with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.
It was known that free Abelian groups do not admit a Hausdorff compact group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size admits a Hausdorff countably compact group topology. We show that no Hausdorff group topology on a free Abelian group makes its -th power countably compact. In particular, a free Abelian group does not admit a Hausdorff -compact nor a sequentially compact group topology. Under CH, we show that a free Abelian group does not admit a Hausdorff...
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.
We introduce and study, following Z. Frol’ık, the class of regular -spaces such that the product is pseudo--compact, for every regular pseudo--compact -space . We show that every pseudo--compact space which is locally is in and that every regular Lindelöf -space belongs to . It is also proved that all pseudo--compact -groups are in . The problem of characterization of subgroups of -factorizable (equivalently, pseudo--compact) -groups is considered as well. We give some necessary...
For every discrete group , the Stone-Čech compactification of has a natural structure of a compact right topological semigroup. An ultrafilter , where , is called right cancellable if, given any , implies . For every right cancellable ultrafilter , we denote by the group endowed with the strongest left invariant topology in which converges to the identity of . For any countable group and any right cancellable ultrafilters , we show that is homeomorphic to if and only if...
Using classical results of infinite-dimensional geometry, we show that the isometry group of the Urysohn space, endowed with its usual Polish group topology, is homeomorphic to the separable Hilbert space ℓ²(ℕ). The proof is based on a lemma about extensions of metric spaces by finite metric spaces, which we also use to investigate (answering a question of I. Goldbring) the relationship, when A,B are finite subsets of the Urysohn space, between the group of isometries fixing A pointwise, the group...
We consider the spaces called , constructed on the set of all finite sequences of natural numbers using ultrafilters to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that is homogeneous if and only if all the ultrafilters have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to (i.e., for all ). It follows that for a Ramsey ultrafilter , is a topological group....
We prove a Dichotomy Theorem: for each Hausdorff compactification of an arbitrary topological group , the remainder is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...