On some minimal transformations of compact spaces
Several results on stability in impulsive dynamical systems are proved. The first main result gives equivalent conditions for stability of a compact set. In particular, a generalization of Ura's theorem to the case of impulsive systems is shown. The second main theorem says that under some additional assumptions every component of a stable set is stable. Also, several examples indicating possible complicated phenomena in impulsive systems are presented.
A dynamical version of the Bourgain-Fremlin-Talagrand dichotomy shows that the enveloping semigroup of a dynamical system is either very large and contains a topological copy of β𝓝, or it is a "tame" topological space whose topology is determined by the convergence of sequences. In the latter case we say that the dynamical system is tame. We show that (i) a metric distal minimal system is tame iff it is equicontinuous, (ii) for an abelian acting group a tame metric minimal system is PI (hence a...
A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.
A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
Let and be tent maps on the unit interval. In this paper we give a new proof of the fact that if the critical points of and are periodic and the inverse limit spaces and are homeomorphic, then s = t. This theorem was first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer. Using the techniques of the paper we are also able to identify certain isotopies between homeomorphisms on the inverse limit space.
If is strictly increasing and continuous define . A transformation is called -close to , if for a strictly increasing and continuous function with . It is proved that the topological pressure is lower semi-continuous, and an upper bound for the jumps up is given. Furthermore the continuity of the maximal measure is shown, if a certain condition is satisfied. Then it is proved that the topological pressure is upper semi-continuous for every continuous function , if and only if is...
Let X be a nonempty set of cardinality at most and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.
We prove some results concerning the entropy of Darboux (and almost continuous) functions. We first generalize some theorems valid for continuous functions, and then we study properties which are specific to Darboux functions. Finally, we give theorems on approximating almost continuous functions by functions with infinite entropy.
We introduce and study the Lyapunov numbers-quantitative measures of the sensitivity of a dynamical system (X,f) given by a compact metric space X and a continuous map f: X → X. In particular, we prove that for a minimal topologically weakly mixing system all Lyapunov numbers are the same.
We discuss a generalization of the *-product in kneading theory to maps with an arbitrary finite number of turning points. This is based on an investigation of the factorization of permutations into products of permutations with some special properties relevant for dynamics on the unit interval.