A Poincaré formula for the fixed point indices of the iterates of arbitrary planar homeomorphisms.
The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.
Given a topological property (or a class) , the class dual to (with respect to neighbourhood assignments) consists of spaces such that for any neighbourhood assignment there is with and . The spaces from are called dually . We continue the study of this duality which constitutes a development of an idea of E. van Douwen used to define -spaces. We prove a number of results on duals of some general classes of spaces establishing, in particular, that any generalized ordered space...
Let G be a group which acts by homeomorphisms on a metric space X. We say the action of G is locally moving on X if for every open U ⊆ X there is a g ∈ G such that g↾X ≠ Id while g↾(X∖U) = Id. We prove the following theorem: Theorem A. Let X,Y be completely metrizable spaces and let G be a group which acts on X and Y with locally moving actions. If the orbits of the action of G on X are of the second category in X and the orbits of the action of G on Y are of the second category...
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
S. Solecki proved that if is a system of closed subsets of a complete separable metric space , then each Suslin set which cannot be covered by countably many members of contains a set which cannot be covered by countably many members of . We show that the assumption of separability of cannot be removed from this theorem. On the other hand it can be removed under an extra assumption that the -ideal generated by is locally determined. Using Solecki’s arguments, our result can be used...
It is proved that under some conditions the set of solutions to initial value problem for second order functional differential system on an unbounded interval is a compact -set and hence nonvoid, compact and connected set in a Fréchet space. The proof is based on a Kubáček’s theorem.