An application of the theory of isosceles (ultrametric) spaces to the Trnková-Vinárek theorem
We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on for which is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on .
It is proved that a piecewise monotone transformation of the unit interval (with a countable number of pieces) is generically chaotic. The Gauss map arising in connection with the continued fraction expansions of the reals is an example of such a transformation.
In 1988 Anosov [1] published the construction of an example of a flow (continuous real action) on a cylinder or annulus with a phase portrait strikingly different from our normal experience. It contains orbits whose -limit sets contain a non-periodic orbit along with a simple closed curve of fixed points, but these orbits do not wrap down on this simple closed curve in the usual way. In this paper we modify some of Anosov’s methods to construct a flow on a surface of genus with equally striking...
An extension of Kirk - Schöneberg surjectivity result is established.