Displaying 301 – 320 of 367

Showing per page

An attraction result and an index theorem for continuous flows on n × [ 0 , )

Klaudiusz Wójcik (1997)

Annales Polonici Mathematici

We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on E = n + 1 for which E = n × 0 is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on n × [ 0 , ) .

An exotic flow on a compact surface

N. Markley, M. Vanderschoot (2000)

Colloquium Mathematicae

In 1988 Anosov [1] published the construction of an example of a flow (continuous real action) on a cylinder or annulus with a phase portrait strikingly different from our normal experience. It contains orbits whose ο m e g a -limit sets contain a non-periodic orbit along with a simple closed curve of fixed points, but these orbits do not wrap down on this simple closed curve in the usual way. In this paper we modify some of Anosov’s methods to construct a flow on a surface of genus 2 with equally striking...

Currently displaying 301 – 320 of 367