Displaying 401 – 420 of 2392

Showing per page

Borel sets with σ-compact sections for nonseparable spaces

Petr Holický (2008)

Fundamenta Mathematicae

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections E x = y Y : ( x , y ) E , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Borsuk-Ulam type theorems

Adam Idzik (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

A generalization of the theorem of Bajmóczy and Bárány which in turn is a common generalization of Borsuk's and Radon's theorem is presented. A related conjecture is formulated.

Bounded analytic sets in Banach spaces

Volker Aurich (1986)

Annales de l'institut Fourier

Conditions are given which enable or disable a complex space X to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of X .

Brouwer Fixed Point Theorem for Simplexes

Karol Pąk (2011)

Formalized Mathematics

In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove...

Brouwer Fixed Point Theorem in the General Case

Karol Pąk (2011)

Formalized Mathematics

In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

Can we assign the Borel hulls in a monotone way?

Márton Elekes, András Máthé (2009)

Fundamenta Mathematicae

A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ G δ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone G δ hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....

Currently displaying 401 – 420 of 2392