Displaying 81 – 100 of 367

Showing per page

A fixed point theorem for a multivalued non-self mapping

Billy E. Rhoades (1996)

Commentationes Mathematicae Universitatis Carolinae

We prove a fixed point theorem for a multivalued non-self mapping in a metrically convex complete metric space. This result generalizes Theorem 1 of Itoh [2].

A fixed point theorem for branched covering maps of the plane

Alexander Blokh, Lex Oversteegen (2009)

Fundamenta Mathematicae

It is known that every homeomorphism of the plane which admits an invariant non-separating continuum has a fixed point in the continuum. In this paper we show that any branched covering map of the plane of degree d, |d| ≤ 2, which has an invariant, non-separating continuum Y, either has a fixed point in Y, or is such that Y contains a minimal (in the sense of inclusion among invariant continua), fully invariant, non-separating subcontinuum X. In the latter case, f has to be of degree -2 and X has...

A fixed point theorem for nonexpansive compact self-mapping

T. D. Narang (2014)

Annales UMCS, Mathematica

A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject

A fixed point theorem for non-self multi-maps in metric spaces

Bapurao Chandra Dhage (1999)

Commentationes Mathematicae Universitatis Carolinae

A fixed point theorem is proved for non-self multi-valued mappings in a metrically convex complete metric space satisfying a slightly stronger contraction condition than in Rhoades [3] and under a weaker boundary condition than in Itoh [2] and Rhoades [3].

Currently displaying 81 – 100 of 367