-space structure on pointed mapping spaces.
Let M be a flat manifold. We say that M has the property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].
We show that many generalisations of Borsuk-Ulam's theorem follow from an elementary result of homological algebra.
The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper: Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that for all k ≥ 1, then and for all k ≥ Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose...