Displaying 21 – 40 of 81

Showing per page

A functional S-dual in a strong shape category

Friedrich Bauer (1997)

Fundamenta Mathematicae

In the S-category P (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual D X , X = ( X , n ) P , turns out to be of the same weak homotopy type as an appropriately defined functional dual ( S 0 ) X ¯ (Corollary 4.9). Sometimes the functional object X Y ¯ is of the same weak homotopy type as the “real” function space X Y (§5).

A homological selection theorem implying a division theorem for Q-manifolds

Taras Banakh, Robert Cauty (2007)

Banach Center Publications

We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and afterward...

A Lefschetz-type coincidence theorem

Peter Saveliev (1999)

Fundamenta Mathematicae

A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: I f g = λ f g , that is, the coincidence index is equal to the Lefschetz number. It follows that if λ f g 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic)...

A Nielsen theory for intersection numbers

Christopher McCord (1997)

Fundamenta Mathematicae

Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number. In particular,...

A Non-standard Version of the Borsuk-Ulam Theorem

Carlos Biasi, Denise de Mattos (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

E. Pannwitz showed in 1952 that for any n ≥ 2, there exist continuous maps φ:Sⁿ→ Sⁿ and f:Sⁿ→ ℝ² such that f(x) ≠ f(φ(x)) for any x∈ Sⁿ. We prove that, under certain conditions, given continuous maps ψ,φ:X→ X and f:X→ ℝ², although the existence of a point x∈ X such that f(ψ(x)) = f(φ(x)) cannot always be assured, it is possible to establish an interesting relation between the points f(φ ψ(x)), f(φ²(x)) and f(ψ²(x)) when f(φ(x)) ≠ f(ψ(x)) for any x∈ X, and a non-standard version of the Borsuk-Ulam...

A note on generalized equivariant homotopy groups

Marek Golasiński, Daciberg L. Gonçalves, Peter N. Wong (2009)

Banach Center Publications

In this paper, we generalize the equivariant homotopy groups or equivalently the Rhodes groups. We establish a short exact sequence relating the generalized Rhodes groups and the generalized Fox homotopy groups and we introduce Γ-Rhodes groups, where Γ admits a certain co-grouplike structure. Evaluation subgroups of Γ-Rhodes groups are discussed.

Currently displaying 21 – 40 of 81