Homology of Deleted Product Spaces.
For the n-dimensional Hawaiian earring n ≥ 2, and is trivial for each 1 ≤ i ≤ n - 1. Let CX be the cone over a space X and CX ∨ CY be the one-point union with two points of the base spaces X and Y being identified to a point. Then for n ≥ 1.
We study the (n+1)st homotopy groups and the shape groups of the (n-1)-fold reduced and unreduced suspensions of the Hawaiian earring.
We show that the first homology group of a locally connected compact metric space is either uncountable or finitely generated. This is related to Shelah's well-known result (1988) which shows that the fundamental group of such a space satisfies a similar condition. We give an example of such a space whose fundamental group is uncountable but whose first homology is trivial, showing that our result does not follow from Shelah's. We clarify a claim made by Pawlikowski (1998) and offer a proof of the...
Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power of any subspace X ⊂ Y is not universal for the class ₂ of absolute -sets; moreover, if Y is an absolute -set, then contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute -set, then contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power of...